Cart (Loading....) | Create Account
Close category search window

Network formalism for modeling functionally gradient piezoelectric plates and stacks and simulations of RAINBOW ceramic actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ballato, J. ; Dept. of Ceramic & Mater. Eng., Clemson Univ., SC, USA ; Schwartz, R. ; Ballato, A.

A simple network representation is given for a stack of thin, homogeneous piezoelectric plates, executing a single thickness mode of motion. All plates may differ in thickness and material properties, including dielectric loss, ohmic conductivity, and viscous loss. Each plate is driven by a thickness-directed electric field, and all stack elements are connected electrically in series. Functionally gradient single plates and composites are readily modeled by the network, to a desired precision, using a sequence of circuit elements representing stepwise variations in material properties and layer thicknesses. Simulations of RAINBOW (reduced and internally biased oxide wafer) ceramics are given.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:48 ,  Issue: 2 )

Date of Publication:

March 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.