By Topic

Formation and properties of proton-exchanged and annealed LiNbO/sub 3/ waveguides for surface acoustic wave

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chien-Chuan Cheng ; Dept. of Electron. Eng., Sze-Hai Inst. of Technol. & Commerce, Taipei, Taiwan ; Horng, Rong-Chang ; Shean-Jen Chen

The proton-exchanged (PE) and annealed PE (APE) z-cut LiNbO/sub 3/ waveguides were fabricated using H/sub 4/P/sub 2/O/sub 7/. The positive strain, c-axis lattice constant change (/spl Delta/c/c), was calculated to be about +0.43%, which was almost independent of the exchanged conditions. The penetration depth of H measured by secondary ion mass spectrometry (SIMS) exhibited a step-like profile, which was assumed to be equal to the waveguide depth (d). The surface acoustic wave (SAW) properties of PE and APE z-cut LiNbO/sub 3/ samples were investigated. The phase velocity (V/sub p/) and electromechanical coupling coefficient (K/sup 2/) of PE samples were significantly decreased by the increase of kd, where k was the wavenumber (2/spl pi///spl lambda/). The insertion loss (IL) of PE samples was increased by the increase of kd and became nearly constant at kd>0.064. The temperature coefficient of frequency (TCF) of PE samples allowed an apparent increase with kd, reaching a maximum at kd=0.292, then slightly decreased at higher kd. The effects of annealing resulted in a restoration of V/sub p/ and an improvement of IL.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:48 ,  Issue: 2 )