By Topic

The application of nonlinear structures to the reconstruction of binary signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. J. Gibson ; Roke Manor Res., Romsey, UK ; S. Siu ; C. F. N. Cowan

The problem of reconstructing digital signals which have been passed through a dispersive channel and corrupted with additive noise is discussed. The problems encountered by linear equalizers under adverse conditions on the signal-to-noise ratio and channel phase are described. By considering the equalization problem as a geometric classification problem the authors demonstrate how these difficulties can be overcome by utilizing nonlinear classifiers as channel equalizers. The manner in which neural networks can be utilized as adaptive channel equalizers is described, and simulation results which suggest that the neural network equalizers offer a performance which exceeds that of the linear structures, particularly in the high-noise environment, are presented

Published in:

IEEE Transactions on Signal Processing  (Volume:39 ,  Issue: 8 )