Cart (Loading....) | Create Account
Close category search window
 

Turbo-encoder design for symbol-interleaved parallel concatenated trellis-coded modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fragouli, C. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Wesel, R.D.

This paper addresses turbo-encoder design for coding with high spectral efficiency using parallel concatenated trellis-coded modulation and symbol interleaving. The turbo-encoder design involves the constituent encoder design and the interleaver design. The constituent encoders are optimized for symbol-wise effective free distance, and each has an infinite symbol-wise impulse response. We identify the canonical structures for the constituent encoder search space. In many cases of practical interest, the optimal structure for these constituent encoders connects the memory elements in a single row. This single row generally applies to turbo code constituent encoders for parallel concatenation and is not restricted to symbol interleaving. To lower the error floor, a new semi-random interleaver design criteria and a construction method extends the spread-interleaver concept introduced by Divsalar and Pollara (1995). Simulation results show that the proposed system employing symbol interleaving can converge at a lower signal-to-noise ratio than previously reported systems. We report simulation results between 0.5 and 0.6 db from constrained capacity for rates of 2 and 4 bits/s/Hz

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 3 )

Date of Publication:

Mar 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.