Cart (Loading....) | Create Account
Close category search window
 

Isolated-utterance speech recognition using hidden Markov models with bounded state durations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Yan Gu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chiu-yu Tseng ; Lin-shan Lee

Hidden Markov models (HMMs) with bounded state durations (HMM/BSD) are proposed to explicitly model the state durations of HMMs and more accurately consider the temporal structures existing in speech signals in a simple, direct, but effective way. A series of experiments have been conducted for speaker dependent applications using 408 highly confusing first-tone Mandarin syllables as the example vocabulary. It was found that in the discrete case the recognition rate of HMM/BSD (78.5%) is 9.0%, 6.3%, and 1.9% higher than the conventional HMMs and HMMs with Poisson and gamma distribution state durations, respectively. In the continuous case (partitioned Gaussian mixture modeling), the recognition rates of HMM/BSD (88.3% with 1 mixture, 88.8% with 3 mixtures, and 89.4% with 5 mixtures) are 6.3%, 5.0%, and 5.5% higher than those of the conventional HMMs, and 5.9% (with 1 mixture), 3.9% (with 3 mixtures) and 3.1% (with 1 mixture), 1.8% (with 3 mixtures) higher than HMMs with Poisson and gamma distributed state durations, respectively

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 8 )

Date of Publication:

Aug 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.