Cart (Loading....) | Create Account
Close category search window
 

Filtering of colored noise for speech enhancement and coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gibson, J.D. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Boneung Koo ; Gray, S.D.

Scalar and vector Kalman filters are implemented for filtering speech contaminated by additive white noise or colored noise, and an iterative signal and parameter estimator which can be used for both noise types is presented. Particular emphasis is placed on the removal of colored noise, such as helicopter noise, by using state-of-the-art colored-noise-assumption Kalman filters. The results indicate that the colored noise Kalman filters provide a significant gain in signal-to-noise ratio (SNR), a visible improvement in the sound spectrogram, and an audible improvement in output speech quality, none of which are available with white-noise-assumption Kalman and Wiener filters. When the filter is used as a prefilter for linear predictive coding, the coded output speech quality and intelligibility are enhanced in comparison to direct coding of the noisy speech

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 8 )

Date of Publication:

Aug 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.