By Topic

Experimental application of extended Kalman filtering for sensor validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Del Gobbo ; Dept. of Mech. & Aerosp. Eng., West Virginia Univ., Morgantown, WV, USA ; M. Napolitano ; P. Famouri ; M. Innocenti

A sensor failure detection and identification scheme for a closed loop nonlinear system is described. Detection and identification tasks are performed by estimating parameters directly related to potential failures. An extended Kalman filter is used to estimate the fault-related parameters, while a decision algorithm based on threshold logic processes the parameter estimates to detect possible failures. For a realistic evaluation of its performance, the detection scheme has been implemented on an inverted pendulum controlled by real-time control software. The failure detection and identification scheme is tested by applying different types of failures on the sensors of the inverted pendulum. Experimental results are presented to validate the effectiveness of the approach

Published in:

IEEE Transactions on Control Systems Technology  (Volume:9 ,  Issue: 2 )