By Topic

A spatial thresholding method for image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mardia, K.V. ; Dept. of Stat., Leeds Univ., UK ; Hainsworth, T.J.

Several model-based algorithms for threshold selection are presented, concentrating on the two-population univariate case in which an image contains an object and background. It is shown how the main ideas behind two important nonspatial thresholding algorithms follow from classical discriminant analysis. Novel thresholding algorithms that make use of available local/spatial information are then given. It is found that an algorithm using alternating mean thresholding and median filtering provides an acceptable method when the image is relatively highly contaminated, and seems to depend less on initial values than other procedures. The methods are also applicable to multispectral k -population images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:10 ,  Issue: 6 )