By Topic

Novel soft-switching DC-DC converter with full ZVS-range and reduced filter requirement. II. Constant-input, variable-output applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ayyanar, R. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Mohan, N.

For pt.I see ibid., vol.16, no.2, p.184-92 (2001). The performance of the hybrid converter featuring zero-voltage-switching (ZVS) down to no-load and significant reduction in the filter requirement, proposed in Part I of this paper, is analyzed here for constant-input, variable-output applications. For these applications, the main drawback of the hybrid converter, namely the increased transformer rating is eliminated. The advantages of the hybrid configuration like the reduction in filter rating and full-load ZVS with negligible penalty on conduction loss, are retained. An extension of the basic hybrid converter-a combination of two full-bridges using six switches is proposed. This configuration is well suited for applications above a few kilowatts, and results in significant reduction in the ripple current rating of the input filter capacitor. Experimental results obtained from a 1 kW/100 kHz prototype are presented

Published in:

Power Electronics, IEEE Transactions on  (Volume:16 ,  Issue: 2 )