By Topic

New optomechanical technique for measuring layer thickness in MEMS processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. C. Marshall ; Div. of Semicond. Electron., Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA

Dimensional metrology improvements are needed to achieve the fabrication of repeatable devices. This research presents a new optomechanical technique for measuring the thickness of a suspended material in two distinct microelectromechanical system (MEMS) fabrication processes. This technique includes design of test structure, choice of measurement tools, method of measurement, and computation of thickness. Two tools, the stylus profilometer and optical interferometer, are used to take measurements. Non-contact measurements are possible on structures as narrow as 5 μm. Local thickness measurements are achievable with combined standard uncertainty values of less than 10 mm. Benefits of using the new technique include greater likelihood of fabricating repeatable devices and more accurate measurements of material parameters. The proposed technique is also applicable for measuring layers that are thinner and made of materials other than the conventional suspended material used in this research

Published in:

Journal of Microelectromechanical Systems  (Volume:10 ,  Issue: 1 )