By Topic

Learning based on conceptual distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kodratoff, Y. ; Lab. de Recherche en Inf., Univ. de Paris-Sud, Orsay, France ; Tecuci, G.

An approach to concept learning from examples and concept learning by observation is presented that is based on a intuitive notion of conceptual distance between examples (concepts) and combines symbolical and numerical methods. The approach is based on the observation that very different examples generalize to an expression that is very far from each of them, while identical examples generalize to themselves. Following this idea the authors propose some domain-independent and intuitively justified estimates for the conceptual distance. A hierarchical conceptual clustering algorithm that groups objects so as to maximize the cohesiveness (a reciprocal of the conceptual distance) of the clusters is presented. It is shown that conceptual clustering can improve learning from complex examples describing objects and the relation between them

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:10 ,  Issue: 6 )