By Topic

Recognizing vehicles in infrared images using IMAP parallel vision board

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Describes a method for vehicle recognition, in particular for recognizing make and model. Our system takes into account the fact that vehicles of the same make and model number come in different colors; it employs infrared (IR) images, thereby eliminating color differences. The use of IR images also enables us to use the same algorithm both day and night. This ability is particularly important because the algorithm must be able to locate many feature points, especially at night. Our algorithm is based on a configuration of local features. For the algorithm, our system first makes a compressed database of local features of a target vehicle from training images given in advance; the system then matches a set of local features in the input image with those in the training images for recognition. This method has the following three advantages: (1) it can detect even if part of the target vehicle is occluded; (2) it can detect even if the target vehicle is translated due to running out of the lanes; and (3) it does not require us to segment a vehicle part from input images. We have two implementations of the algorithm. One is referred to as the eigenwindow method, while the other is called the vector-quantization method. The former method is good at recognition, but is not very fast. The latter method is not very good at recognition but it is suitable for an IMAP parallel image-processing board; hence, it can be fast. In both implementations, the above-mentioned advantages have been confirmed by performing outdoor experiments

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:2 ,  Issue: 1 )