Cart (Loading....) | Create Account
Close category search window
 

Nonlinear multiresolution techniques with applications to scientific visualization in a haptic environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asghar, M.W. ; Qualcom Inc., San Diego, CA, USA ; Barner, K.E.

This paper develops nonlinear multiresolution techniques for scientific visualization utilizing haptic methods. The visualization of data is critical to many areas of scientific pursuit. Scientific visualization is generally accomplished through computer graphic techniques. Recent advances in haptic technologies allow visual techniques to be augmented with haptic methods. The kinesthetic feedback provided through haptic techniques provides a second modality for visualization and allows for active exploration. Moreover, haptic methods can be utilized by individuals with visual impairments. Haptic representations of large data sets, however, can be confusing to a user, especially if a visual representation is not available or cannot be used. This paper develops a multiresolution data decomposition method based on the affine median filter. This results in a hybrid structure that can be tuned to yield a decomposition that varies from a linear wavelet decomposition to that produced by the median filter. The performance of this hybrid structure is analyzed utilizing deterministic signals and statistically in the frequency domain. This analysis and qualitative and quantitative implementation results show that the affine median decomposition has advantages over previously proposed methods. In addition to multiresolution decomposition development, analysis, and results, haptic implementation methods are presented

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan-Mar 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.