By Topic

On simulated annealing and the construction of linear spline approximations for scattered data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Kreylos ; Dept. of Comput. Sci., California Univ., Davis, CA, USA ; B. Hamann

We describe a method to create optimal linear spline approximations to arbitrary functions of one or two variables, given as scattered data without known connectivity. We start with an initial approximation consisting of a fixed number of vertices and improve this approximation by choosing different vertices, governed by a simulated annealing algorithm. In the case of one variable, the approximation is defined by line segments; in the case of two variables, the vertices are connected to define a Delaunay triangulation of the selected subset of sites in the plane. In a second version of this algorithm, specifically designed for the bivariate case, we choose vertex sets and also change the triangulation to achieve both optimal vertex placement and optimal triangulation. We then create a hierarchy of linear spline approximations, each one being a superset of all lower-resolution ones

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:7 ,  Issue: 1 )