By Topic

Inherently lower-power high-performance superscalar architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. V. Zyuban ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; P. M. Kogge

In recent years, reducing power has become an important design goal for high-performance microprocessors. This work attempts to bring the power issue to the earliest phases of microprocessor development, in particular, the stage of defining a chip microarchitecture. We investigate power-optimization techniques of superscalar microprocessors at the microarchitecture level that do not compromise performance. First, major targets for power reduction are identified within microarchitecture, where power is heavily consumed or will be heavily consumed in next-generation superscalar processors. Then, a new, energy-efficient version of a multicluster microarchitecture is developed that reduces energy the identified critical design points with minimal performance impact. A methodology is developed for energy-performance optimization at the microarchitecture level that generates, for a microarchitecture, a set of energy-efficient configurations, forming a convex hull in the power-performance space. Detailed simulation of the baseline and proposed multicluster architectures has been performed using the developed optimization methodology. A comparison of the two microarchitectures, both optimized for energy efficiency, shows that the multicluster architecture is potentially up to twice as energy efficient for wide issue processors, with an advantage that Grows with the issue width. Conversely, at the same power dissipation level, the multicluster architecture supports configurations with measurably higher performance than equivalent conventional designs

Published in:

IEEE Transactions on Computers  (Volume:50 ,  Issue: 3 )