By Topic

Prognostic methodology for deep submicron semiconductor failure modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Goodman, D.L. ; Ridgetop Group Inc., Tucson, AZ, USA

Semiconductor reliability issues are beginning to emerge as a major impediment to long term reliability of critical systems such as Internet routers, ATM machines, and Automotive/Aerospace fly-by-wire systems. Semiconductors have certain defined failure modes that can contribute to end-of life failures. These modes include time-dependent dielectric breakdown of the gate oxide (TDDB), hot carrier damage, and metal migration. All of these common failure modes are far worse at geometries below 0.25 μm. Fortunately, there are methods proposed that counteract these common failure modes. This paper surveys the problems involved, and recommends a methodology for the inclusion of pre-calibrated prognostic cells that can be co-located with a host circuit to provide an “early-warning” of a system failure, so that appropriate corrective action can be taken

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:24 ,  Issue: 1 )