By Topic

Reliability and costs optimization for distribution networks expansion using an evolutionary algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramirez-Rosado, I.J. ; Dept. of Electr. Eng., La Rioja Univ., Spain ; Bernal-Agustin, J.L.

This paper presents a multiobjective optimization methodology, using an evolutionary algorithm, for finding out the best distribution network reliability while simultaneously minimizing the system expansion costs. A nonlinear mixed integer optimization model, achieving the optimal sizing and location of future feeders (reserve feeders and operation feeders) and substations, has been used. The proposed methodology has been tested intensively for distribution systems with dimensions that are significantly larger than the ones frequently found in the papers about this issue. Furthermore, this methodology is general since it is suitable for the multiobjective optimization of n objectives simultaneously. The algorithm can determine the set of optimal nondominated solutions, allowing the planner to obtain the optimal locations and sizes of the reserve feeders that achieve the best system reliability with the lowest expansion costs. The model and the algorithm have been applied intensively to real life power systems showing its potential of applicability to large distribution networks in practice

Published in:

Power Systems, IEEE Transactions on  (Volume:16 ,  Issue: 1 )