By Topic

Dynamic security constrained optimal power flow/VAr planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Vaahedi, E. ; B.C. Hydro, Burnaby, BC, Canada ; Mansour, Y. ; Fuchs, C. ; Granville, S.
more authors

Traditionally security constrained optimal power flow and VAr planning methods consider static security observing voltage profile and flow constraints under normal and post contingency conditions. Ideally, these formulations should be extended to consider dynamic security. This paper reports on a BC Hydro/CEPEL joint effort establishing a dynamic security constrained OPF/VAr planning tool which considers simultaneously static constraints as well as voltage stability constraints. This paper covers the details of formulation and implementation of the tool together with the test results on a large scale North American utility system and a reduced Brazilian system

Published in:

Power Systems, IEEE Transactions on  (Volume:16 ,  Issue: 1 )