By Topic

An analysis of belief propagation on the turbo decoding graph with Gaussian densities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rusmevichientong, P. ; Dept. of Manage. Sci. & Eng., Stanford Univ., CA, USA ; Van Roy, B.

Motivated by its success in decoding turbo codes, we provide an analysis of the belief propagation algorithm on the turbo decoding graph with Gaussian densities. In this context, we are able to show that, under certain conditions, the algorithm converges and that-somewhat surprisingly-though the density generated by belief propagation may differ significantly from the desired posterior density, the means of these two densities coincide. Since computation of posterior distributions is tractable when densities are Gaussian, use of belief propagation in such a setting may appear unwarranted. Indeed, our primary motivation for studying belief propagation in this context stems from a desire to enhance our understanding of the algorithm's dynamics in a non-Gaussian setting, and to gain insights into its excellent performance in turbo codes. Nevertheless, even when the densities are Gaussian, belief propagation may sometimes provide a more efficient alternative to traditional inference methods

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 2 )