Cart (Loading....) | Create Account
Close category search window
 

Analyzing the turbo decoder using the Gaussian approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
El Gamal, H. ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD, USA ; Hammons, A.R., Jr.

We introduce a simple technique for analyzing the iterative decoder that is broadly applicable to different classes of codes defined over graphs in certain fading as well as additive white Gaussian noise (AWGN) channels. The technique is based on the observation that the extrinsic information from constituent maximum a posteriori (MAP) decoders is well approximated by Gaussian random variables when the inputs to the decoders are Gaussian. The independent Gaussian model implies the existence of an iterative decoder threshold that statistically characterizes the convergence of the iterative decoder. Specifically, the iterative decoder converges to zero probability of error as the number of iterations increases if and only if the channel E b/N0 exceeds the threshold. Despite the idealization of the model and the simplicity of the analysis technique, the predicted threshold values are in excellent agreement with the waterfall regions observed experimentally in the literature when the codeword lengths are large. Examples are given for parallel concatenated convolutional codes, serially concatenated convolutional codes, and the generalized low-density parity-check (LDPC) codes of Gallager and Cheng-McEliece (1996). Convergence-based design of asymmetric parallel concatenated convolutional codes (PCCC) is also discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 2 )

Date of Publication:

Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.