By Topic

A fast multipole-method-based calculation of the capacitance matrix for multiple conductors above stratified dielectric media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pan, Y.C. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Weng Cho Chew ; Wan, L.X.

An efficient static fast-multipole-method (FMM)-based algorithm is presented in this paper for the evaluation of the parasitic capacitance of three-dimensional microstrip signal lines above stratified dielectric media. The effect of dielectric interfaces on the capacitance matrix is included in the stage of FMM when outgoing multipole expansions are used to form local multipole expansions by the use of interpolated image outgoing-to-local multipole translation functions. The increase in computation time and memory usage, compared to the free-space case, is, therefore, small. The algorithm retains O(N) computational and memory complexity of the free-space FMM, where N is the number of conductor patches

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 3 )