By Topic

Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu, Xidong ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Eleftheriades, G.V. ; van Deventer-Perkins, T.E.

Single- and multiple-beam circularly polarized ellipsoidal substrate lenses suitable for millimeter-wave wireless communications have been designed, implemented, and experimentally characterized at 30 GHz. The lenses are made out of low-cost low-permittivity Rexolite material. The single-beam lens achieves a directivity of 25.9 dB, a front-to-back ratio of 30 dB, and an axial ratio of 0.5 dB is maintained within the main lobe. The measured impedance bandwidth is 12.5% within a SWR⩽1.8:1. The single-beam antenna is well suited for broad-band wireless point-to-point links. On the other hand, the multiple-beam lens launches 31 beams with a minimum 3-dB overlapping level among adjacent beams. The coverage of the lens antenna system has been optimized through the utilization of a hexagonal patch arrangement leading to a scan coverage of 45.4° with a maximum loss in directivity of 1.8 dB due to multiple reflections. The multiple-beam lens antenna is suitable for indoor point-to-multipoint wireless communications such as a broad-band local area network or as a switched beam smart antenna. During the proposed design process, some fundamental issues pertaining to substrate lens antennas are discussed and clarified. This includes the depolarization properties of the lenses, the effect of multiple internal reflections on the far-field patterns and the directivity, the nature of the far-field patterns, the estimation of the lens system F/B ratio, and the off-axis characteristics of ellipsoidal lenses

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:49 ,  Issue: 3 )