By Topic

Time and frequency domain characteristics of polarization-mode dispersion emulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Khosravani, R. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Lima, I.T. ; Ebrahimi, P. ; Ibragimov, E.
more authors

We investigate both experimentally and theoretically a new technique to realistically emulate polarization-mode dispersion (PMD). We propose and demonstrate a PMD emulator using rotatable connectors between sections of polarization-maintaining fibers that generates an ensemble of high PMD fiber realizations by randomly rotating the connectors. It is shown that: (1) the DGD of this emulator is Maxwellian-distributed over an ensemble of fiber realizations at any fixed optical frequency; and (2) the frequency autocorrelation function of the PMD emulator resembles that in a real fiber when averaged over an ensemble of fiber realizations. A realistic autocorrelation function is required for proper emulation of higher order PMD and indicates the feasibility of using this emulator for wavelength-division-multiplexing (WDM) systems.

Published in:

Photonics Technology Letters, IEEE  (Volume:13 ,  Issue: 2 )