By Topic

Synthesis of low-power DSP systems using a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper presents a new tool for the synthesis of low-power VLSI designs, specifically, those designs targeting digital signal processing applications. The synthesis tool genetic algorithm for low-power synthesis (GALOPS) uses a genetic algorithm to apply power-reducing transformations to high-level signal-processing designs, producing designs that satisfy power requirements as well as timing and area constraints. GALOPS uses problem-specific genetic operators that are specifically tailored to incorporate VLSI-based digital signal processing design knowledge. A number of signal-processing benchmarks are used to facilitate the analysis of low-power design tools, and to aid in the comparison of results. Results demonstrate that GALOPS achieves significant power reductions in the presented benchmark designs. In addition, GALOPS produces a family of unique solutions for each design, all of which satisfy the multiple design objectives, providing flexibility to the VLSI designer

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:5 ,  Issue: 1 )