By Topic

All-optical flip-flop based on coupled laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. T. Hill ; Dept. of Electr. Eng., Eindhoven Univ. of Technol., Netherlands ; H. de Waardt ; G. D. Khoe ; H. J. S. Dorren

An all-optical set-reset flip-flop is presented that is based on two coupled lasers with separate cavities and lasing at different wavelengths. The lasers are coupled so that lasing in one of the lasers quenches lasing in the other laser. The flip-flop state is determined by the laser that is currently lasing. A rate-equation based model for the flip-flop is developed and used to obtain steady-state characteristics. Important properties of the system, such as the minimum coupling between lasers and the optical power required for switching, are derived from the model. These properties are primarily dependent on the laser mirror reflectivity, the inter-laser coupling, and the power emitted from one of the component lasers, affording the designer great control over the flip-flop properties. The flip-flop is experimentally demonstrated with two lasers constructed from identical semiconductor optical amplifiers (SOAs) and fiber Bragg gratings of different wavelengths. Good agreement between the theory and experiment is obtained. Furthermore, switching over a wide range of input wavelengths is shown; however, increased switching power is required for wavelengths far from the SOA gain peak

Published in:

IEEE Journal of Quantum Electronics  (Volume:37 ,  Issue: 3 )