By Topic

Solid-state time-of-flight range camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lange, R. ; Ind. 11, Niederhasli, Switzerland ; Seitz, P.

The concept of a real-time range camera without moving parts is described, based on the time-of-flight (TOF) principle. It operates with modulated visible and near-infrared radiation, which is detected and demodulated simultaneously by a 2-D array of lock-in pixels employing the charge-coupled device principle. Each pixel individually measures the amplitude, offset and phase of the received radiation. The theoretical resolution limit of this TOF range camera is derived, which depends on the square root of the detected background radiation and the inverse of the modulation amplitude. Actual measurements of 3-D sequences acquired at 10 range images per second show excellent agreement between our theory and the observed results. A range resolution of a few centimeters over a range of 10 m, with an illumination power of a few hundreds of milliwatts is obtained in laboratory scenes for noncooperative, diffusely reflecting objects

Published in:

Quantum Electronics, IEEE Journal of  (Volume:37 ,  Issue: 3 )