By Topic

DS-CDMA system with joint channel estimation and MAP detection in time-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsai, S. ; Ericsson Wireless Commun., San Diego, CA, USA ; Wong, T.F. ; Lehnert, J.S.

In this paper, maximum a posteriori (MAP) detection is applied to a direct-sequence code-division multiple-access (DS-CDMA) system jointly with identification and estimation of time-selective fading channels. By sampling the outputs of the matched filter and combining antenna array elements, strong and time-varying multiple-access interference (MAI) is characterized and suppressed instantaneously. The decision statistics for MAP detection are obtained from the conditional probability density function of the prediction error. The prediction is accomplished by approximating the fading channel with a constrained nonlinear state model. Unknown parameters such as auto-regressive (AR) process coefficients, noise covariance matrices, and the antenna array vector are estimated based on received sample vectors only. Also, differential modulation is applied to eliminate the need for pilot insertion. Through computer simulations, near-optimum bit error rates (BERs) are found

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:19 ,  Issue: 1 )