Cart (Loading....) | Create Account
Close category search window

A probabilistic framework for semantic video indexing, filtering, and retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naphide, H.R. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Huang, T.S.

Semantic filtering and retrieval of multimedia content is crucial for efficient use of the multimedia data repositories. Video query by semantic keywords is one of the most difficult problems in multimedia data retrieval. The difficulty lies in the mapping between low-level video representation and high-level semantics. We therefore formulate the multimedia content access problem as a multimedia pattern recognition problem. We propose a probabilistic framework for semantic video indexing, which call support filtering and retrieval and facilitate efficient content-based access. To map low-level features to high-level semantics we propose probabilistic multimedia objects (multijects). Examples of multijects in movies include explosion, mountain, beach, outdoor, music etc. Semantic concepts in videos interact and to model this interaction explicitly, we propose a network of multijects (multinet). Using probabilistic models for six site multijects, rocks, sky, snow, water-body forestry/greenery and outdoor and using a Bayesian belief network as the multinet we demonstrate the application of this framework to semantic indexing. We demonstrate how detection performance can be significantly improved using the multinet to take interconceptual relationships into account. We also show how the multinet can fuse heterogeneous features to support detection based on inference and reasoning

Published in:

Multimedia, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

Mar 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.