By Topic

Rigorous finite-difference analysis of coupled channel waveguides with arbitrarily varying index profile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schulz, N. ; Microwave Dept., Bremen Univ., Germany ; Bierwirth, K. ; Arndt, F. ; Koster, U.

A rigorous finite-difference formulation for the hybrid-mode analysis of coupled diffused dielectric channel waveguides is presented. The method includes the two-dimensional continuous index profile variations directly in the finite-difference form of coupled equations and avoids the shortcomings inherent in the usual staircase approximations. The formulation in terms of the wave equation for the transverse components of the magnetic field leads to an eigenvalue problem where the nonphysical, spurious modes do not appear. The analysis includes the complete set of hybrid-modes, takes mode-conversion effects and complex waves into account, if they exist, and allows the calculation of dielectric channel waveguides with large index difference levels. Dispersion characteristic examples are calculated for coupled structures suitable for optical integrated circuits. The theory verified by comparison with results available from other methods

Published in:

Lightwave Technology, Journal of  (Volume:9 ,  Issue: 10 )