Cart (Loading....) | Create Account
Close category search window
 

Analysis of the clustering properties of the Hilbert space-filling curve

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Moon, B. ; Dept. of Comput. Sci., Arizona Univ., Tucson, AZ, USA ; Jagadish, H.V. ; Faloutsos, C. ; Saltz, J.H.

Several schemes for the linear mapping of a multidimensional space have been proposed for various applications, such as access methods for spatio-temporal databases and image compression. In these applications, one of the most desired properties from such linear mappings is clustering, which means the locality between objects in the multidimensional space being preserved in the linear space. It is widely believed that the Hilbert space-filling curve achieves the best clustering (Abel and Mark, 1990; Jagadish, 1990). We analyze the clustering property of the Hilbert space-filling curve by deriving closed-form formulas for the number of clusters in a given query region of an arbitrary shape (e.g., polygons and polyhedra). Both the asymptotic solution for the general case and the exact solution for a special case generalize previous work. They agree with the empirical results that the number of clusters depends on the hypersurface area of the query region and not on its hypervolume. We also show that the Hilbert curve achieves better clustering than the z curve. From a practical point of view, the formulas given provide a simple measure that can be used to predict the required disk access behaviors and, hence, the total access time

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

Jan/Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.