By Topic

First-order tree-type dependence between variables and classification performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raudys, S. ; Inst. of Math. & Inf., Acad. of Sci., Vilnius, Lithuania ; Saudargiene, A.

Structuralization of the covariance matrix reduces the number of parameters to be estimated from the training data and does not affect an increase in the generalization error asymptotically as both the number of dimensions and training sample size grow. A method to benefit from approximately correct assumptions about the first order tree dependence between components of the feature vector is proposed. We use a structured estimate of the covariance matrix to decorrelate and scale the data and to train a single-layer perceptron in the transformed feature space. We show that training the perceptron can reduce negative effects of inexact a priori information. Experiments performed with 13 artificial and 10 real world data sets show that the first-order tree-type dependence model is the most preferable one out of two dozen of the covariance matrix structures investigated

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 2 )