By Topic

Correspondence with cumulative similarity transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Darrell, T. ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; Covell, M.

A local image transform based on cumulative similarity measures is defined and is shown to enable efficient correspondence and tracking near occluding boundaries. Unlike traditional methods, this transform allows correspondences to be found when the only contrast present is the occluding boundary itself and when the sign of contrast along the boundary is possibly reversed. The transform is based on the idea of a cumulative similarity measure which characterizes the shape of local image homogeneity; both the value of an image at a particular point and the shape of the region with locally similar and connected values is captured. This representation is insensitive to structure beyond an occluding boundary but is sensitive to the shape of the boundary itself, which is often an important cue. We show results comparing this method to traditional least-squares and robust correspondence matching

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 2 )