Cart (Loading....) | Create Account
Close category search window
 

Generality-based conceptual clustering with probabilistic concepts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Talavera, L. ; Dept. de Llenguatges i Sistemes Inf., Univ. Politecnica de Catalunya, Barcelona, Spain ; Bejar, J.

Statistical research in clustering has almost universally focused on data sets described by continuous features and its methods are difficult to apply to tasks involving symbolic features. In addition, these methods are seldom concerned with helping the user in interpreting the results obtained. Machine learning researchers have developed conceptual clustering methods aimed at solving these problems. Following a long term tradition in AI, early conceptual clustering implementations employed logic as the mechanism of concept representation. However, logical representations have been criticized for constraining the resulting cluster structures to be described by necessary and sufficient conditions. An alternative are probabilistic concepts which associate a probability or weight with each property of the concept definition. In this paper, we propose a symbolic hierarchical clustering model that makes use of probabilistic representations and extends the traditional ideas of specificity-generality typically found in machine learning. We propose a parameterized measure that allows users to specify both the number of levels and the degree of generality of each level. By providing some feedback to the user about the balance of the generality of the concepts created at each level and given the intuitive behavior of the user parameter, the system improves user interaction in the clustering process

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.