By Topic

Optimizing symbolic model checking for statecharts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
W. Chan ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; R. J. Anderson ; P. Beame ; D. H. Jones
more authors

Symbolic model checking based on binary decision diagrams is a powerful formal verification technique for reactive systems. In this paper, we present various optimizations for improving the time and space efficiency of symbolic modal checking for systems specified as statecharts. We used these techniques in our analyses of the models of a collision avoidance system and a fault-tolerant electrical power distribution (EPD) system, both used on commercial aircraft. The techniques together reduce the time and space requirements by orders of magnitude, making feasible some analysis that was previously intractable. We also elaborate on the results of verifying the EPD model. The analysis disclosed subtle modeling and logical flaws not found by simulation

Published in:

IEEE Transactions on Software Engineering  (Volume:27 ,  Issue: 2 )