By Topic

Hierarchical GUI test case generation using automated planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Memon, A.M. ; Dept. of Comput. Sci., Pittsburgh Univ., PA, USA ; Pollack, M.E. ; Soffa, M.L.

The widespread use of GUIs for interacting with software is leading to the construction of more and more complex GUIs. With the growing complexity come challenges in testing the correctness of a GUI and its underlying software. We present a new technique to automatically generate test cases for GUIs that exploits planning, a well-developed and used technique in artificial intelligence. Given a set of operators, an initial state, and a goal state, a planner produces a sequence of the operators that will transform the initial state to the goal state. Our test case generation technique enables efficient application of planning by first creating a hierarchical model of a GUI based on its structure. The GUI model consists of hierarchical planning operators representing the possible events in the GUI. The test designer defines the preconditions and effects of the hierarchical operators, which are input into a plan-generation system. The test designer also creates scenarios that represent typical initial and goal states for a GUI user. The planner then generates plans representing sequences of GUI interactions that a user might employ to reach the goal state from the initial state. We implemented our test case generation system, called Planning Assisted Tester for Graphical User Interface Systems (PATHS) and experimentally evaluated its practicality and effectiveness. We describe a prototype implementation of PATHS and report on the results of controlled experiments to generate test cases for Microsoft's WordPad

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 2 )