By Topic

3-D FEM micromagnetic modeling of spin-valve sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuankai Zheng ; Data Storage Inst., Singapore ; Wu, Yihong ; Chong, Towchong

Synthetic antiferromagnetic (SAF) spin-valve (SV) sensors (NiFe/Cu/Co/Ru/Co/IrMn) are studied in detail through 3-D FEM micromagnetic modeling. The current induced field, demagnetizing field and the exchange couple field are taken into account. The SAF structure is shown to have some advantages. The current field is not only helpful to bias the signal, but also to stabilize the SAF pinned layer because the current in the Co layers produces opposing fields in the layers. The thermal stability has been improved by introducing the current field. The SAF structure not only reduces the demagnetizing field in the free layer and itself, but also increases the signal dynamic range and reduces the signal distortion. These are attributed to the large antiferromagnetic coupling constant and the pinning field. Simulation results show that there is no noise-producing domain formation when the product of remanent magnetization and thickness of the hard magnets is slightly greater than that of the saturation magnetization and the thickness of the free layer

Published in:

Magnetics, IEEE Transactions on  (Volume:36 ,  Issue: 5 )