By Topic

The NGI ONRAMP test bed: reconfigurable WDM technology for next generation regional access networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Froberg, N.M. ; Lincoln Lab., MIT, Lexington, MA, USA ; Henion, S.R. ; Rao, H.G. ; Hazzard, B.K.
more authors

Next generation internet optical network for regional access using multi-wavelength protocols (NGI ONRAMP) is a pre-competitive consortium sponsored by DARPA. Its mission is to develop architectures, protocols, and algorithms for wavelength division multiplexing (WDM)-based regional access networks that will effectively support the NGI. A reconfigurable WDM test bed is being built to demonstrate some of the key thrusts of the consortium, including dynamic service provisioning and optical flow switching, service protection in the optical domain, medium access control protocols, and network control and management geared for the efficient transport of Internet traffic over WDM networks. The ONRAMP test bed will consist of a feeder network connecting via access nodes to distribution networks on which the end users reside. ONRAMP network reconfiguration is enabled by access nodes that contain both optical and electronic switching components, allowing data traffic to be routed all-optically through the network or to be switched and aggregated by electronic Internet protocol (IP) routers. This paper describes the goals and basic architecture of the ONRAMP test bed, as well as the design, construction, and characterization of the network access nodes. To illustrate test bed operation, we demonstrate optical flow switching over the test bed that achieves Gb/s throughput of TCP data between end user workstations.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 12 )