Cart (Loading....) | Create Account
Close category search window
 

High-order image subsampling using feedforward artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dumitras, A. ; AT&T Labs.-Res., Middletown, NJ, USA ; Kossentini, F.

We propose a method for high-order image subsampling using feedforward artificial neural networks (FANNs). In our method, the high-order subsampling process is decomposed into a sequence of first-order subsampling stages. The first stage employs a tridiagonally symmetrical FANN, which is obtained by applying the design algorithm introduced by Dumitras and Kossentini (see IEEE Trans. Signal Processing, vol.48, p.1446-55, 2000). The second stage employs a small fully connected FANN. The algorithm used to train both FANNs employs information about local edges (extracted using pattern matching) to perform effective subsampling of both high detail and smooth image areas. We show that our multistage first-order subsampling method achieves excellent speed-performance tradeoffs, and it consistently outperforms traditional lowpass filtering and subsampling methods both subjectively and objectively

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 3 )

Date of Publication:

Mar 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.