By Topic

Parametric estimation of the orientation of textured planar surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Francos, J.M. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Permuter, H.H.

This paper presents a parametric solution to the problem of estimating the orientation in space of a planar textured surface, from a single, noisy, observed image of it. The coordinate transformation from surface to image coordinates, due to the perspective projection, transforms each homogeneous sinusoidal component of the surface texture into a sinusoid whose frequency is a function of location. The functional dependence of the sinusoid phase in location is uniquely determined by the tilt and slant angles of the surface. Using the phase differencing algorithm we fit a polynomial phase model to a sinusoidal component of the observed texture. Assuming the estimated polynomial coefficients are the coefficients of a Taylor series expansion of the phase, we establish a linear recursive relation between the model parameters and the unknown slant and tilt. A linear least squares solution of the resulting system provides the slant and tilt estimates. To improve accuracy, an iterative refinement procedure is applied in a small neighborhood of these estimates. The performance of the proposed algorithms is evaluated by applying them to images of different planar surfaces, and by comparing their statistical performance with the Cramer-Rao bound. The combined two-stage algorithm is shown to produce estimates that are close to the bound

Published in:

Image Processing, IEEE Transactions on  (Volume:10 ,  Issue: 3 )