By Topic

Sampled-data filtering with error covariance assignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zidong Wang ; Fachbereich Math., Kaiserslautern Univ., Germany ; Biao Huang ; Peijun Huo

We consider the sampled-data filtering problem by proposing a new performance criterion in terms of the estimation error covariance. An innovation approach to sampled-data filtering is presented. First, the definition of the estimation covariance e for a sampled-data system is given, then the sampled-data filtering problem is reduced to the Kalman filter design problem for a fictitious discrete-time system, and finally, an effective method is developed to design discrete-time Kalman filters in such a way that the resulting sampled-data estimation covariance achieves a prescribed value. We derive both the existence conditions and the explicit expression of the desired filters and provide an illustrative numerical example to demonstrate the directness and flexibility of the present design method

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 3 )