Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Particle filters for state estimation of jump Markov linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doucet, Arnaud ; Dept. of Eng., Cambridge Univ., UK ; Gordon, N.J. ; Krishnamurthy, V.

Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. In this paper, our aim is to recursively compute optimal state estimates for this class of systems. We present efficient simulation-based algorithms called particle filters to solve the optimal filtering problem as well as the optimal fixed-lag smoothing problem. Our algorithms combine sequential importance sampling, a selection scheme, and Markov chain Monte Carlo methods. They use several variance reduction methods to make the most of the statistical structure of JMLS. Computer simulations are carried out to evaluate the performance of the proposed algorithms. The problems of on-line deconvolution of impulsive processes and of tracking a maneuvering target are considered. It is shown that our algorithms outperform the current methods

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 3 )