By Topic

Maximum-likelihood-based multipath channel estimation for code-division multiple-access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ertin, E. ; Cognitive Syst. Group, Battelle Memorial Inst., Columbus, OH, USA ; Mitra, U. ; Siwamogsatham, S.

The problem of estimating the channel parameters of a new user in a multiuser code-division multiple-access (CDMA) communication system is addressed. It is assumed that the new user transmits training data over a slowly fading multipath channel. The proposed algorithm is based on maximum-likelihood estimation of the channel parameters. First, an asymptotic expression for the likelihood function of channel parameters is derived and a re-parametrization of this likelihood function is proposed. In this re-parametrization, the channel parameters are combined into a discrete time channel filter of symbol period length. Then, expectation-maximization algorithm and alternating projection algorithm-based techniques are considered to extract channel parameters from the estimated discrete channel filter, to maximize the derived asymptotic likelihood function. The performance of the proposed algorithms is evaluated through simulation studies. In addition, the proposed algorithms are compared to previously suggested subspace techniques for multipath channel estimation

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 2 )