Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Rate-distortion-optimal subband coding without perfect-reconstruction constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mihcak, M.K. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Moulin, P. ; Anitescu, M. ; Ramchandran, K.

We investigate the design of subband coders without the traditional perfect-reconstruction constraint on the filters. The coder uses scalar quantizers, and its filters and bit allocation are designed to optimize a rate-distortion criterion. Using convexity analysis, we show that optimality can be achieved using filterbanks that are the cascade of a (paraunitary) principal component filterbank for the input spectral process and a set of pre and postfilters surrounding each quantizer. Analytical expressions for the pre and postfilters are then derived. An algorithm for computing the globally optimal filters and bit allocation is given. We also develop closed-form solutions for the special case of two-channel coders under an exponential rate-distortion model. Finally, we investigate a constrained-length version of the filter design problem, which is applicable to practical coding scenarios. While the optimal filterbanks are nearly perfect-reconstruction at high rates, we demonstrate an apparently surprising advantage of optimal FIR filterbanks; they significantly outperform optimal perfect-reconstruction FIR filterbanks at all bit rates

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 3 )