By Topic

Error propagation and recovery in decision-feedback equalizers for nonlinear channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsimbinos, J. ; Defence Sci. & Technol. Organ., Salisbury, SA, Australia ; White, L.B.

Nonlinear intersymbol interference is often present in communication and digital storage channels. Decision-feedback equalizers (DFEs) can decrease this nonlinear effect by including appropriate nonlinear feedback filters. Although various applications of these types of equalizers have been published in the literature, the analysis of their stability and error recovery has not appeared. We consider a DFE with a nonlinear feedback filter based on a discrete Volterra series. We extend error propagation, error probability, stability, and error recovery time results for Nth order nonlinear channels

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 2 )