By Topic

Control of singularly perturbed hybrid stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Filar, J.A. ; Center for Ind. & Appl. Math., Univ. of South Australia, The Levels, SA, Australia ; Gaitsgory, V. ; Haurie, A.B.

We study a class of optimal stochastic control problems involving two different time scales. The fast mode of the system is represented by deterministic state equations whereas the slow mode of the system corresponds to a jump disturbance process. Under a fundamental “ergodicity” property for a class of “infinitesimal control systems” associated with the fast mode, we show that there exists a limit problem which provides a good approximation to the optimal control of the perturbed system. Both the finite- and infinite-discounted horizon cases are considered. We show how an approximate optimal control law can be constructed from the solution of the limit control problem. In the particular case where the infinitesimal control systems possess the so-called turnpike property, i.e., characterized by the existence of global attractors, the limit control problem can be given an interpretation related to a decomposition approach

Published in:

Automatic Control, IEEE Transactions on  (Volume:46 ,  Issue: 2 )