By Topic

Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hoonyol Lee ; T.H. Huxley Sch. of Environ., Earth Sci. & Eng., Imperial Coll. of Sci., Technol. & Med., London, UK ; Jian Guo Liu

Topographic decorrelation due to the local surface slope has been an obstacle to interferometric synthetic aperture radar (InSAR) applications. A modified spatial decorrelation function is derived as a function of the baseline and topography. This function explains the origin of the total topographic decorrelation phenomenon on the slopes directly facing radar illumination and layover, which may mislead InSAR coherence image interpretation. The authors define critical terrain slope (or critical incidence angle) as the angle for which two SAR signals completely decorrelate regardless of surface stability. It is found that the width of the critical terrain slope increases with the increase of the component of the baseline perpendicular to the radar look direction. A new analytical method, the ratio coherence imagery, is then introduced to highlight total topographic decorrelation against the temporal decorrelation features. The applications of this methodology are demonstrated in selected locations in the Sahara Desert, Algeria, and Almerı´a, Spain, using ERS-1 and ERS-2 SAR data

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 2 )