By Topic

Synchronization of MEMS resonators and mechanical neurocomputing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hoppensteadt, F.C. ; Center for Syst. Sci. & Eng., Arizona State Univ., Tempe, AZ, USA ; Izhikevich, E.M.

We combine here two well-known and established concepts: microelectromechanical systems (MEMS) and neurocomputing. First, we consider MEMS oscillators having low amplitude activity and we derive a simple mathematical model that describes nonlinear phase-locking dynamics in them. Then, we investigate a theoretical possibility of using MEMS oscillators to build an oscillatory neurocomputer having autocorrelative associative memory. The neurocomputer stores and retrieves complex oscillatory patterns in the form of synchronized states with appropriate phase relations between the oscillators. Thus, we show that MEMS alone can be used to build a sophisticated information processing system (U.S. provisional patent 60/178,654)

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:48 ,  Issue: 2 )