By Topic

On-demand location aware multicast (OLAM) for ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Basagni, S. ; Erik Jonsson Sch. of Eng. & Comput. Sci., Texas Univ., Dallas, TX, USA ; Chlamtac, I. ; Syrotiuk, V.R. ; Talebi, R.

This paper introduces OLAM, a novel on-demand location aware multicast protocol for ad hoc networks. The protocol assumes that, through the use of positioning system devices, such as Global Positioning System (GPS) devices, each node knows its own position and the current (global) time, and it is able to efficiently distribute these measures, including its current transmission radius, to all other nodes. As the measures are received, each node updates its local snapshot of the complete network topology. When a packet is to be multicast to a group, a heuristic is then used to locally compute the Steiner (i.e., multicast) tree for the addressed multicast group based on the snapshot rather than maintaining the tree in a distributed manner. The resulting Steiner tree is then optimally encoded by using its unique Prufer sequence and included along with the packet, extending the length of the header by no more than the header of packets in source routing (unicast) techniques. All local computations are executed using efficient (i.e., polynomial time) algorithms. The protocol has been simulated in ad hoc networks with 30 and 60 nodes and with different multicast group sizes. We show that OLAM delivers packets to all the nodes in a destination group in more than 85% of the cases. Furthermore, compared to flooding, OLAM achieves improvements of up to 50% on multicast completion delay

Published in:

Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE  (Volume:3 )

Date of Conference:

2000