By Topic

Three-dimensional microwave tomography: experimental imaging of phantoms and biological objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
S. Y. Semenov ; Laser & Appl. Technol. Lab., Carolinas Heart Inst., Charlotte, NC, USA ; A. E. Bulyshev ; A. E. Souvorov ; A. G. Nazarov
more authors

Microwave tomographic experiments have been performed on a three-dimensional (3-D) phantom and excised canine heart using a 3-D system operating at frequency of 2.4 GHz. A modified gradient reconstruction approach has been employed for the 3-D image reconstruction. To compare two-dimensional (2-D) and 3-D approaches, we also performed 2-D image reconstruction using an approach based on the Newton method. Experimental data acquired on experimental phantoms were analyzed using both 2-D and 3-D reconstruction approaches. High-quality images were reconstructed using the 3-D approach. The reconstruction procedure failed when the 2-D approach was applied to reconstruct images of the 3-D object. An image of the dielectric properties of the excised canine heart was obtained using a 3-D reconstruction approach. Images successfully revealed a complex internal structure of the heart, including both right-hand side and left-hand side ventricles

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:48 ,  Issue: 6 )