By Topic

High performance software testing on SIMD machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. W. Krauser ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; A. P. Mathur ; V. J. Rego

A method for high-performance, software testing, called mutant unification, is described. The method is designed to support program mutation on parallel machines based on the single instruction multiple data stream (SIMD) paradigm. Several parameters that affect the performance of unification have been identified and their effect on the time to completion of a mutation test cycle and speedup has been studied. Program mutation analysis provides an effective means for determining the reliability of large software systems and a systematic method for measuring the adequacy of test data. However, it is likely that testing large software systems using mutation is computation bound and prohibitive on traditional sequential machines. Current, implementations of mutation tools are unacceptably slow and are only suitable for testing relatively small programs. The proposed unification method provides a practical alternative to the current approaches. The method also opens up a new application domain for SIMD machines

Published in:

IEEE Transactions on Software Engineering  (Volume:17 ,  Issue: 5 )